Studying Vortex Dynamics of Rotating Convection with PIV

Hao Fu

(fuhao@lasg.iap.ac.cn)

Shiwei Sun,

(sunsw@smail.nju.edu.cn)

School of Atmospheric Sciences, Nanjing University Chinese Academy of Sciences

Model problem - Rotating Convection

Cold

How do vortices interact with each other?

dominated by *plumes /cells*

Drazin and Reid, Hydrodynamic Stability

dominated by vortices

Photoed by Fu Hao in an old instrument

The rotating instrument

Flow characteristics => PIV method

Two Measure Strategies

- Scanning PIV
- Continuous Measurement (no scanning)

Vertical scanning with a smart phones

Only the vertical vorticity of lower layers were measured Scanning period: 12 seconds

Scanning measurement (0.167Hz)

- Plot the five crosssections together (6s time interval)
- Similar patterns
- Strongest vortex at the lowest level.

Defect:

- Poor temporal resolution
- What about the top layer?

A closer look: vortex merge cases

Two Measure Strategies

- Scanning PIV
- Continuous Measurement (no scanning)

A snapshot of continuous measurement (0.5 Hz)

For each vortex, vorticity are vertically antisymmetric, with comparable strength

z=1cm

TANK

Case 1: double vortices merge

 $L\sim2.4$ cm $\Delta t\sim3$ s

Similar pattern for lower and upper layer

Vortices collide directly without co-rotation

 $L\sim2.5$ cm $\Delta t\sim2$ s

Case 2: merge and split again

L~3.2cm Δt ~3s

- Similar behaviour for lower
 & upper layer
- Thin vortex filaments cut by another vortex

 Influence from other vortices should be accounted

 $L\sim4.3$ cm $\Delta t\sim2$ s

Case 3: triple vortices interaction

 $L\sim3.9$ cm $\Delta t\sim2$ s

Counter-clockwise co-rotation!

 $L\sim4.1$ cm $\Delta t\sim3$ s

Hypothesis of dynamics-2D horizontal viewpoint

 Non-convectional vortices can be depicted with 2D vorticity equation

Evolving vortices: (high Ra number)

$$\frac{D(curl \overrightarrow{V})}{Dt} = f \frac{\partial w}{\partial z} + \nu \Delta (curl \overrightarrow{V})$$
Sprague et al., 2006

- Co-rotation sometimes occurs
- Hard to parameterize $f \frac{\partial w}{\partial z}$

$$\frac{D(curl\ \overrightarrow{V})}{Dt} = \nu \Delta (curl\ \overrightarrow{V})$$
, with Re = 1000

Hypothesis of dynamics-3D vortex rings viewpoint

- Vortex rings appear in non-rotating convection
- At certain inclined angle,
 2 vortex rings merge directly, without co-rotation

Copied from Kida et al., 1991, JFM

another approach – "helicical-vortex instability"
 may be of help. G. Levina et al., 2000

Concluding Remarks

- Two measurement methods are applied to rotating convection in a square tank:
 - (1) scanning PIV
 - (2) fixed-point consecutive measuement

Structure:

- vertically alligned with little vertical of pattern.
- rotate oppositely at lower and upper layer, with comparable strength. Synchronized motion.

Kinetics:

 Vortex merge events are prevalent and diverse, some exhibit co-rotational behavior but some do not.

unnegligible influence from surrouding vortices

The dynamics without the surrouding vortices remains unknown

Thanks for your attention!

fuhao@lasg.iap.ac.cn sunsw@smail.nju.edu.cn